Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
Sci Rep ; 13(1): 5513, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-37015991

RESUMEN

Loss of function mutations in the gene encoding dystrophin elicits a hypersensitive fear response in mice and humans. In the dystrophin-deficient mdx mouse, this behaviour is partially protected by oestrogen, but the mechanistic basis for this protection is unknown. Here, we show that female mdx mice remain normotensive during restraint stress compared to a hypotensive and hypertensive response in male mdx and male/female wildtype mice, respectively. Partial dystrophin expression in female mdx mice (heterozygous) also elicited a hypertensive response. Ovariectomized (OVX) female mdx mice were used to explain the normotensive response to stress. OVX lowered skeletal muscle mass and lowered the adrenal mass and zona glomerulosa area (aldosterone synthesis) in female mdx mice. During a restraint stress, OVX dampened aldosterone synthesis and lowered the corticosterone:11-dehydrocorticosterone. All OVX-induced changes were restored with replacement of oestradiol, except that oestradiol lowered the zona fasciculata area of the adrenal gland, dampened corticosterone synthesis but increased cortisol synthesis. These data suggest that oestrogen partially attenuates the unconditioned fear response in mdx mice via adrenal and vascular function. It also suggests that partial dystrophin restoration in a dystrophin-deficient vertebrate is an effective approach to develop an appropriate hypertensive response to stress.


Asunto(s)
Distrofina , Miedo , Distrofia Muscular de Duchenne , Animales , Femenino , Humanos , Masculino , Ratones , Aldosterona , Corticosterona , Distrofina/metabolismo , Estradiol , Estrógenos , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/genética
2.
Mol Metab ; 68: 101670, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36642217

RESUMEN

OBJECTIVE: Skeletal muscle oxidative capacity is central to physical activity, exercise capacity and whole-body metabolism. The three estrogen-related receptors (ERRs) are regulators of oxidative metabolism in many cell types, yet their roles in skeletal muscle remain unclear. The main aim of this study was to compare the relative contributions of ERRs to oxidative capacity in glycolytic and oxidative muscle, and to determine defects associated with loss of skeletal muscle ERR function. METHODS: We assessed ERR expression, generated mice lacking one or two ERRs specifically in skeletal muscle and compared the effects of ERR loss on the transcriptomes of EDL (predominantly glycolytic) and soleus (oxidative) muscles. We also determined the consequences of the loss of ERRs for exercise capacity and energy metabolism in mice with the most severe loss of ERR activity. RESULTS: ERRs were induced in human skeletal muscle in response to an exercise bout. Mice lacking both ERRα and ERRγ (ERRα/γ dmKO) had the broadest and most dramatic disruption in skeletal muscle gene expression. The most affected pathway was "mitochondrial function", in particular Oxphos and TCA cycle genes, and transcriptional defects were more pronounced in the glycolytic EDL than the oxidative soleus. Mice lacking ERRß and ERRγ, the two isoforms expressed highly in oxidative muscles, also exhibited defects in lipid and branch chain amino acid metabolism genes, specifically in the soleus. The pronounced disruption of oxidative metabolism in ERRα/γ dmKO mice led to pale muscles, decreased oxidative capacity, histochemical patterns reminiscent of minicore myopathies, and severe exercise intolerance, with the dmKO mice unable to switch to lipid utilization upon running. ERRα/γ dmKO mice showed no defects in whole-body glucose and energy homeostasis. CONCLUSIONS: Our findings define gene expression programs in skeletal muscle that depend on different combinations of ERRs, and establish a central role for ERRs in skeletal muscle oxidative metabolism and exercise capacity. Our data reveal a high degree of functional redundancy among muscle ERR isoforms for the protection of oxidative capacity, and show that ERR isoform-specific phenotypes are driven in part, but not exclusively, by their relative levels in different muscles.


Asunto(s)
Músculo Esquelético , Enfermedades Musculares , Humanos , Ratones , Animales , Músculo Esquelético/metabolismo , Metabolismo Energético , Isoformas de Proteínas/metabolismo , Estrógenos/metabolismo , Lípidos
3.
Front Physiol ; 13: 837697, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35185627

RESUMEN

Resistance-based blood flow restriction training (BFRT) improves skeletal muscle strength and size. Unlike heavy-load resistance training (HLRT), there is debate as to whether strength adaptations following BFRT interventions can be primarily attributed to concurrent muscle hypertrophy, as the magnitude of hypertrophy is often minor. The present study aimed to investigate the effect of 7 weeks of BFRT and HLRT on muscle strength and hypertrophy. The expression of protein growth markers from muscle biopsy samples was also measured. Male participants were allocated to moderately heavy-load training (HL; n = 9), low-load BFRT (LL + BFR; n = 8), or a control (CON; n = 9) group to control for the effect of time. HL and LL + BFR completed 21 training sessions (3 d.week-1) comprising bilateral knee extension and knee flexion exercises (HL = 70% one-repetition maximum (1-RM), LL + BFR = 20% 1-RM + blood flow restriction). Bilateral knee extension and flexion 1-RM strength were assessed, and leg muscle CSA was measured via peripheral quantitative computed tomography. Protein growth markers were measured in vastus lateralis biopsy samples taken pre- and post the first and last training sessions. Biopsy samples were also taken from CON at the same time intervals as HL and LL + BFR. Knee extension 1-RM strength increased in HL (19%) and LL + BFR (19%) but not CON (2%; p < 0.05). Knee flexion 1-RM strength increased similarly between all groups, as did muscle CSA (50% femur length; HL = 2.2%, LL + BFR = 3.0%, CON = 2.1%; TIME main effects). 4E-BP1 (Thr37/46) phosphorylation was lower in HL and LL + BFR immediately post-exercise compared with CON in both sessions (p < 0.05). Expression of other growth markers was similar between groups (p > 0.05). Overall, BFRT and HLRT improved muscle strength and size similarly, with comparable changes in intramuscular protein growth marker expression, both acutely and chronically, suggesting the activation of similar anabolic pathways. However, the low magnitude of muscle hypertrophy was not significantly different to the non-training control suggesting that strength adaptation following 7 weeks of BFRT is not driven by hypertrophy, but rather neurological adaptation.

4.
J Strength Cond Res ; 36(8): 2306-2312, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-32881839

RESUMEN

ABSTRACT: Allsopp, GL, Hoffmann, SM, Feros, SA, Pasco, JA, Russell, AP, and Wright, CR. The effect of normobaric hypoxia on resistance training adaptations in older adults. J Strength Cond Res 36(8): 2306-2312, 2022-The effect of normobaric hypoxia on strength, body composition, and cardiovascular fitness was investigated after a resistance training intervention in older adults. A single-blinded, randomized control trial recruited 20 healthy adults aged 60-75 years for an 8-week resistance training intervention in normoxia ( n = 10) or normobaric hypoxia (14.4% O 2 ; n = 10). Subjects performed 2 sessions per week of upper-body and lower-body exercises at 70% of 1 repetition maximum (1RM). Pretraining and post-training, maximal oxygen uptake (V̇O 2 max), muscular endurance (30 maximal knee flexions/extensions), and 5RM were assessed, with 5RM used to calculate 1RM. Subjects underwent whole-body dual-energy x-ray absorptiometry (DXA) at pretraining and post-training for fat and lean mass quantification. Significance was set at p < 0.05. Subjects in both groups substantially improved their calculated 1RM strength for leg extension, pectoral fly, row, and squat (normoxia; 30, 38, 27, and 29%, hypoxia; 43, 50, 28, and 64%, respectively); however, hypoxia did not augment this response. Hypoxia did not enhance V̇O 2 max or muscular endurance responses after the training intervention, with no improvements seen in either group. Fat mass and lean mass remained unchanged in both groups after the intervention. In summary, 8 weeks of resistance training in hypoxia was well tolerated in healthy older adults and increased upper-body and lower-body strength. However, the magnitude of strength and lean muscle improvements in hypoxia was no greater than normoxia; therefore, there is currently no evidence to support the use of hypoxic resistance training in older adults.


Asunto(s)
Entrenamiento de Fuerza , Adaptación Fisiológica , Composición Corporal/fisiología , Humanos , Hipoxia , Fuerza Muscular/fisiología , Músculo Esquelético/fisiología
5.
Neurobiol Dis ; 162: 105559, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34774794

RESUMEN

Skeletal muscle dysfunction may contribute to the progression and severity of amyotrophic lateral sclerosis (ALS). In the present study, we characterized the skeletal muscle pathophysiology in an inducible transgenic mouse model (rNLS8) that develops a TAR-DNA binding protein (TDP-43) proteinopathy and ALS-like neuropathology and disease progression; representative of >90% of all familial and sporadic ALS cases. As we previously observed elevated levels of miR-23a in skeletal muscle of patients with familial and sporadic ALS, we also investigated the effect of miR-23a suppression on skeletal muscle pathophysiology and disease severity in rNLS8 mice. Five weeks after disease onset TDP-43 protein accumulation was observed in tibialis anterior (TA), quadriceps (QUAD) and diaphragm muscle lysates and associated with skeletal muscle atrophy. In the TA muscle TDP-43 was detected in muscle fibres that appeared atrophied and angular in appearance and that also contained ß-amyloid aggregates. These fibres were also positive for neural cell adhesion molecule (NCAM), but not embryonic myosin heavy chain (eMHC), indicating TDP-43/ ß-amyloid localization in denervated muscle fibres. There was an upregulation of genes associated with myogenesis and NMJ degeneration and a decrease in the MURF1 atrophy-related protein in skeletal muscle. Suppression of miR-23a impaired rotarod performance and grip strength and accelerated body weight loss during early stages of disease progression. This was associated with increased AchRα mRNA expression and decreased protein levels of PGC-1α. The TDP-43 proteinopathy-induced impairment of whole body and skeletal muscle functional performance is associated with muscle wasting and elevated myogenic and NMJ stress markers. Suppressing miR-23a in the rNLS8 mouse model of ALS contributes to an early acceleration of disease progression as measured by decline in motor function.


Asunto(s)
Esclerosis Amiotrófica Lateral , Proteínas de Unión al ADN , MicroARNs , Proteinopatías TDP-43 , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Proteínas de Unión al ADN/genética , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Transgénicos , MicroARNs/genética , Proteinopatías TDP-43/genética
6.
FASEB J ; 35(12): e22034, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34780665

RESUMEN

Mutation to the gene encoding dystrophin can cause Duchenne muscular dystrophy (DMD) and increase the sensitivity to stress in vertebrate species, including the mdx mouse model of DMD. Behavioral stressors can exacerbate some dystrophinopathy phenotypes of mdx skeletal muscle and cause hypotension-induced death. However, we have discovered that a subpopulation of mdx mice present with a wildtype-like response to mild (forced downhill treadmill exercise) and moderate (scruff restraint) behavioral stressors. These "stress-resistant" mdx mice are more physically active, capable of super-activating the hypothalamic-pituitary-adrenal and renin-angiotensin-aldosterone pathways following behavioral stress and they express greater levels of mineralocorticoid and glucocorticoid receptors in striated muscle relative to "stress-sensitive" mdx mice. Stress-resistant mdx mice also presented with a less severe striated muscle histopathology and greater exercise and skeletal muscle oxidative capacity at rest. Most interestingly, female mdx mice were more physically active following behavioral stressors compared to male mdx mice; a response abolished after ovariectomy and rescued with estradiol. We demonstrate that the response to behavioral stress greatly impacts disease severity in mdx mice suggesting the management of stress in patients with DMD be considered as a therapeutic approach to ameliorate disease progression.


Asunto(s)
Conducta Animal , Distrofia Muscular Animal/patología , Distrofia Muscular de Duchenne/patología , Condicionamiento Físico Animal , Estrés Psicológico/complicaciones , Animales , Modelos Animales de Enfermedad , Distrofina/deficiencia , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Ratones Noqueados , Distrofia Muscular Animal/etiología , Distrofia Muscular Animal/psicología , Distrofia Muscular de Duchenne/etiología , Distrofia Muscular de Duchenne/psicología , Factores Sexuales
7.
Exp Physiol ; 106(7): 1597-1611, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33963617

RESUMEN

NEW FINDINGS: What is the central question of this study? Striated muscle activator of rho signalling (STARS) is an actin-binding protein that regulates transcriptional pathways controlling muscle function, growth and myogenesis, processes that are impaired in dystrophic muscle: what is the regulation of the STARS pathway in Duchenne muscular dystrophy (DMD)? What is the main finding and its importance? Members of the STARS signalling pathway are reduced in the quadriceps of patients with DMD and in mouse models of muscular dystrophy. Overexpression of STARS in the dystrophic deficient mdx mouse model increased maximal isometric specific force and upregulated members of the actin cytoskeleton and oxidative phosphorylation pathways. Regulating STARS may be a therapeutic approach to enhance muscle health. ABSTRACT: Duchenne muscular dystrophy (DMD) is characterised by impaired cytoskeleton organisation, cytosolic calcium handling, oxidative stress and mitochondrial dysfunction. This results in progressive muscle damage, wasting and weakness and premature death. The striated muscle activator of rho signalling (STARS) is an actin-binding protein that activates the myocardin-related transcription factor-A (MRTFA)/serum response factor (SRF) transcriptional pathway, a pathway regulating cytoskeletal structure and muscle function, growth and repair. We investigated the regulation of the STARS pathway in the quadriceps muscle from patients with DMD and in the tibialis anterior (TA) muscle from the dystrophin-deficient mdx and dko (utrophin and dystrophin null) mice. Protein levels of STARS, SRF and RHOA were reduced in patients with DMD. STARS, SRF and MRTFA mRNA levels were also decreased in DMD muscle, while Stars mRNA levels were decreased in the mdx mice and Srf and Mrtfa mRNAs decreased in the dko mice. Overexpressing human STARS (hSTARS) in the TA muscles of mdx mice increased maximal isometric specific force by 13% (P < 0.05). This was not associated with changes in muscle mass, fibre cross-sectional area, fibre type, centralised nuclei or collagen deposition. Proteomics screening followed by pathway enrichment analysis identified that hSTARS overexpression resulted in 31 upregulated and 22 downregulated proteins belonging to the actin cytoskeleton and oxidative phosphorylation pathways. These pathways are impaired in dystrophic muscle and regulate processes that are vital for muscle function. Increasing the STARS protein in dystrophic muscle improves muscle force production, potentially via synergistic regulation of cytoskeletal structure and energy production.


Asunto(s)
Distrofia Muscular de Duchenne , Fosforilación Oxidativa , Citoesqueleto de Actina/metabolismo , Animales , Modelos Animales de Enfermedad , Distrofina/genética , Distrofina/metabolismo , Humanos , Ratones , Ratones Endogámicos mdx , Proteínas de Microfilamentos , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo
8.
Am J Physiol Endocrinol Metab ; 319(6): E1008-E1018, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32954829

RESUMEN

Skeletal muscle is sensitive to environmental cues that are first present in utero. Maternal overnutrition is a model of impaired muscle development leading to structural and metabolic dysfunction in adult life. In this study, we investigated the effect of an obesogenic maternal environment on growth and postnatal myogenesis in the offspring. Male C57BL/6J mice born to chow- or high-fat-diet-fed mothers were allocated to four different groups at the end of weaning. For the following 10 wk, half of the pups were maintained on the same diet as their mother and half of the pups were switched to the other diet (chow or high-fat). At 12 wk of age, muscle injury was induced using an intramuscular injection of barium chloride. Seven days later, mice were humanely killed and muscle tissue was harvested. A high-fat maternal diet impaired offspring growth patterns and downregulated satellite cell activation and markers of postnatal myogenesis 7 days after injury without altering the number of newly synthetized fibers over the whole 7-day period. Importantly, a healthy postnatal diet could not reverse any of these effects. In addition, we demonstrated that postnatal myogenesis was associated with a diet-independent upregulation of three miRNAs, mmu-miR-31-5p, mmu-miR-136-5p, and mmu-miR-296-5p. Furthermore, in vitro analysis confirmed the role of these miRNAs in myocyte proliferation. Our findings are the first to demonstrate that maternal overnutrition impairs markers of postnatal myogenesis in the offspring and are particularly relevant to today's society where the incidence of overweight/obesity in women of childbearing age is increasing.


Asunto(s)
Dieta Alta en Grasa , Crecimiento y Desarrollo/fisiología , Desarrollo de Músculos/fisiología , Efectos Tardíos de la Exposición Prenatal , Células Satélite del Músculo Esquelético/fisiología , Animales , Biomarcadores/análisis , Biomarcadores/metabolismo , Dieta Alta en Grasa/efectos adversos , Femenino , Masculino , Fenómenos Fisiologicos Nutricionales Maternos , Ratones , Ratones Endogámicos C57BL , MicroARNs/genética , MicroARNs/metabolismo , Obesidad/etiología , Obesidad/fisiopatología , Hipernutrición/complicaciones , Hipernutrición/fisiopatología , Embarazo , Complicaciones del Embarazo/etiología , Complicaciones del Embarazo/fisiopatología , Efectos Tardíos de la Exposición Prenatal/etiología , Efectos Tardíos de la Exposición Prenatal/fisiopatología
9.
Am J Physiol Cell Physiol ; 319(2): C432-C440, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32608991

RESUMEN

microRNAs (miRNAs) are important regulators of cellular homeostasis and exert their effect by directly controlling protein expression. We have previously reported an age-dependent negative association between microRNA-99b (miR-99b-5p) expression and muscle protein synthesis in human muscle in vivo. Here we investigated the role of miR-99b-5p as a potential negative regulator of protein synthesis via inhibition of mammalian target for rapamycin (MTOR) signaling in human primary myocytes. Overexpressing miR-99b-5p in human primary myotubes from young and old subjects significantly decreased protein synthesis with no effect of donor age. A binding interaction between miR-99b-5p and its putative binding site within the MTOR 3'-untranslated region (UTR) was confirmed in C2C12 myoblasts. The observed decline in protein synthesis was, however, not associated with a suppression of the MTOR protein but of its regulatory associated protein of mTOR complex 1 (RPTOR). These results demonstrate that modulating the expression levels of a miRNA can regulate protein synthesis in human muscle cells and provide a potential mechanism for muscle wasting in vivo.


Asunto(s)
MicroARNs/genética , Fibras Musculares Esqueléticas/metabolismo , Biosíntesis de Proteínas/genética , Serina-Treonina Quinasas TOR/genética , Regiones no Traducidas 3'/genética , Animales , Proliferación Celular/genética , Regulación de la Expresión Génica/genética , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Ratones , Mioblastos/metabolismo , Transducción de Señal/genética
10.
Exp Physiol ; 105(8): 1326-1338, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32468595

RESUMEN

NEW FINDINGS: What is the central question of this study? Do elevated levels of the stress-response protein NDRG2 protect against fasting and chronic disease in mouse skeletal muscle? What is the main finding and its importance? NDRG2 levels increased in the tibialis anterior muscle in response to fasting and the effects of motor neurone disease. No alleviation of the stress-related and proteasomal pathways, mitochondrial dysfunction or muscle mass loss was observed even with the addition of exogenous NDRG2 indicating that the increase in NDRG2 is a normal adaptive response. ABSTRACT: Skeletal muscle mass loss and dysfunction can arise from stress, which leads to enhanced protein degradation and metabolic impairment. The expression of N-myc downstream-regulated gene 2 (NDRG2) is induced in response to different stressors and is protective against the effects of stress in some tissues and cell types. Here, we investigated the endogenous NDRG2 response to the stress of fasting and chronic disease in mice and whether exogenous NDRG2 overexpression through adeno-associated viral (AAV) treatment ameliorated the response of skeletal muscle to these conditions. Endogenous levels of NDRG2 increased in the tibialis anterior muscle in response to 24 h fasting and with the development of the motor neurone disease, amyotrophic lateral sclerosis, in SOD1G93A transgenic mice. Despite AAV-induced overexpression and increased expression with fasting, NDRG2 was unable to protect against the activation of proteasomal and stress pathways in response to fasting. Furthermore, NDRG2 was unable to reduce muscle mass loss, mitochondrial dysfunction and elevated oxidative and endoplasmic reticulum stress levels in SOD1G93A mice. Conversely, elevated NDRG2 levels did not exacerbate these stress responses. Overall, increasing NDRG2 levels might not be a useful therapeutic strategy to alleviate stress-related disease pathologies in skeletal muscle.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Músculo Esquelético/metabolismo , Estrés Fisiológico , Animales , Enfermedad Crónica , Modelos Animales de Enfermedad , Estrés del Retículo Endoplásmico , Ayuno , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mitocondrias , Estrés Oxidativo , Transducción de Señal , Superóxido Dismutasa/metabolismo
11.
Nutrients ; 11(7)2019 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-31323812

RESUMEN

The combinations of food consumed together (dietary patterns) may have a greater influence on health than nutrients or food groups consumed independently. This study investigated the relationship between dietary patterns, body composition and metabolic biomarkers of premenopausal New Zealand women from three ethnic groups. In total, 408 New Zealand European, Maori and Pacific women aged 16-45 years participated in the Women's EXPLORE (EXamining Predictors Linking Obesity Related Elements) study. Participants completed a 220-item food frequency questionnaire. Several body composition parameters and metabolic biomarkers were measured. Dietary patterns were extracted by principal component analysis and dietary pattern scores were categorised into tertiles to assess links with other measured parameters. Women with higher scores for the 'refined and processed' pattern were younger, had higher body mass index, total body fat, plasma leptin and plasma insulin (p < 0.001), and lower plasma ghrelin levels (p < 0.05) than women with lower scores. In addition, more Maori (51%) and Pacific (68%) women followed the 'refined and processed' pattern, while more New Zealand European women (40%) followed the 'sweet and savoury snacking' pattern. These data show that dietary pattern analysis is a useful tool to assess links between diet and metabolic health. It further reveals interesting ethnic group-specific differences in dietary pattern use.


Asunto(s)
Composición Corporal/fisiología , Encuestas sobre Dietas , Preferencias Alimentarias , Adulto , Biomarcadores/sangre , Dieta/normas , Ingestión de Energía , Femenino , Humanos , Nativos de Hawái y Otras Islas del Pacífico , Nueva Zelanda , Nutrientes
12.
Physiol Rep ; 7(13): e14108, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31257737

RESUMEN

Lipid mediators including classical arachidonic acid-derived eicosanoids (e.g. prostaglandins and leukotrienes) and more recently identified specialized pro-resolving-mediator metabolites of the omega-3 fatty acids play essential roles in initiation, self-limitation, and active resolution of acute inflammatory responses. In this study, we examined the bioactive lipid mediator profile of human skeletal muscle at rest and following acute resistance exercise. Twelve male subjects completed a single bout of maximal isokinetic unilateral knee extension exercise and muscle biopsies were taken from the m.vastus lateralis before and at 2, 4, and 24 h of recovery. Muscle tissue lipid mediator profile was analyzed via liquid chromatography-mass spectrometry (LC-MS)-based targeted lipidomics. At 2 h postexercise, there was an increased intramuscular abundance of cyclooxygenase (COX)-derived thromboxanes (TXB2 : 3.33 fold) and prostaglandins (PGE2 : 2.52 fold and PGF2α : 1.77 fold). Resistance exercise also transiently increased muscle concentrations of lipoxygenase (LOX) pathway-derived leukotrienes (12-Oxo LTB4 : 1.49 fold and 20-COOH LTB4 : 2.91 fold), monohydroxy-eicosatetraenoic acids (5-HETE: 2.66 fold, 12-HETE: 2.83 fold, and 15-HETE: 1.69 fold) and monohydroxy-docosahexaenoic acids (4-HDoHE: 1.69 fold, 7-HDoHE: 1.58 fold and 14-HDoHE: 2.35 fold). Furthermore, the abundance of CYP pathway-derived epoxy- and dihydroxy-eicosatrienoic acids was increased in 2 h postexercise biopsies (5,6-EpETrE: 2.48 fold, 11,12-DiHETrE: 1.66 fold and 14,15-DiHETrE: 2.23 fold). These data reveal a range of bioactive lipid mediators as present within human skeletal muscle tissue and demonstrate that acute resistance exercise transiently stimulates the local production of both proinflammatory eicosanoids and pathway markers in specialized proresolving mediator biosynthesis circuits.


Asunto(s)
Metabolismo de los Lípidos , Músculo Esquelético/metabolismo , Entrenamiento de Fuerza/métodos , Ácidos Araquidónicos/metabolismo , Ácido Eicosapentaenoico/metabolismo , Humanos , Lipooxigenasa/metabolismo , Masculino , Músculo Esquelético/fisiología , Prostaglandinas/metabolismo , Tromboxanos/metabolismo , Adulto Joven
13.
BMC Mol Cell Biol ; 20(1): 12, 2019 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-31138100

RESUMEN

BACKGROUND: MicroRNAs (miRNAs) are increasingly being identified as modulatory molecules for physiological and pathological processes in muscle. Here, we investigated whether miRNAs influenced the expression of the stress-responsive gene N-myc downstream-regulated gene 2 (Ndrg2) in skeletal muscle cells through the targeted degradation or translation inhibition of NDRG2 mRNA transcripts during basal or catabolic stress conditions. RESULTS: Three miRNAs, mmu-miR-23a-3p (miR-23a), mmu-miR-23b-3p (miR-23b) and mmu-miR-28-5p (miR-28), were identified using an in silico approach and confirmed to target the 3' untranslated region of the mouse Ndrg2 gene through luciferase reporter assays. However, miR-23a, -23b or -28 overexpression had no influence on NDRG2 mRNA or protein levels up to 48 h post treatment in mouse C2C12 myotubes under basal conditions. Interestingly, a compensatory decrease in the endogenous levels of the miRNAs in response to each other's overexpression was measured. Furthermore, dexamethasone, a catabolic stress agent that induces NDRG2 expression, decreased miR-23a and miR-23b endogenous levels at 24 h post treatment suggesting an interplay between these miRNAs and NDRG2 regulation under similar stress conditions. Accordingly, when overexpressed simultaneously, miR-23a, -23b and -28 attenuated the dexamethasone-induced increase of NDRG2 protein translation but did not affect Ndrg2 gene expression. CONCLUSION: These findings highlight modulatory and co-regulatory roles for miR-23a, -23b and -28 and their novel regulation of NDRG2 during stress conditions in muscle.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , MicroARNs/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Estrés Fisiológico/genética , Regiones no Traducidas 3'/genética , Animales , Sitios de Unión , Línea Celular , Simulación por Computador , Dexametasona/farmacología , Expresión Génica , Regulación de la Expresión Génica , Células HEK293 , Humanos , Ratones , Fibras Musculares Esqueléticas/efectos de los fármacos , Biosíntesis de Proteínas , Estrés Fisiológico/efectos de los fármacos , Transfección
14.
Mol Metab ; 23: 88-97, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30862473

RESUMEN

OBJECTIVE: Endurance exercise training remodels skeletal muscle, leading to increased mitochondrial content and oxidative capacity. How exercise entrains skeletal muscle signaling pathways to induce adaptive responses remains unclear. In past studies, we identified Perm1 (PGC-1 and ERR induced regulator, muscle 1) as an exercise-induced gene and showed that Perm1 overexpression elicits similar muscle adaptations as endurance exercise training. The mechanism of action and the role of Perm1 in exercise-induced responses are not known. In this study, we aimed to determine the pathway by which Perm1 acts as well as the importance of Perm1 for acute and long-term responses to exercise. METHODS: We performed immunoprecipitation and mass spectrometry to identify Perm1 associated proteins, and validated Perm1 interactions with the Ca2+/calmodulin-dependent protein kinase II (CaMKII). We also knocked down Perm1 expression in gastrocnemius muscles of mice via AAV-mediated delivery of shRNA and assessed the impact of reduced Perm1 expression on both acute molecular responses to a single treadmill exercise bout and long-term adaptive responses to four weeks of voluntary wheel running training. Finally, we asked whether Perm1 levels are modulated by diet or diseases affecting skeletal muscle function. RESULTS: We show that Perm1 associates with skeletal muscle CaMKII and promotes CaMKII activation. In response to an acute exercise bout, muscles with a knock down of Perm1 showed defects in the activation of CaMKII and p38 MAPK and blunted induction of regulators of oxidative metabolism. Following four weeks of voluntary training, Perm1 knockdown muscles had attenuated mitochondrial biogenesis. Finally, we found that Perm1 expression is reduced in diet-induced obese mice and in muscular dystrophy patients and mouse models. CONCLUSIONS: Our findings identify Perm1 as a muscle-specific regulator of exercise-induced signaling and Perm1 levels as tuners of the skeletal muscle response to exercise. The decreased Perm1 levels in states of obesity or muscle disease suggest that Perm1 may link pathological states to inefficient exercise responses.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Entrenamiento Aeróbico , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Condicionamiento Físico Animal , Adolescente , Adulto , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Línea Celular Tumoral , Niño , Preescolar , Prueba de Esfuerzo , Femenino , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Lactante , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Musculares/genética , Distrofias Musculares/metabolismo , Distrofias Musculares/patología , Transfección , Adulto Joven
15.
J Vis Exp ; (143)2019 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-30735157

RESUMEN

Assessment of skeletal muscle contractile function is an important measurement for both clinical and research purposes. Numerous conditions can negatively affect skeletal muscle. This can result in a loss of muscle mass (atrophy) and/or loss of muscle quality (reduced force per unit of muscle mass), both of which are prevalent in chronic disease, muscle-specific disease, immobilization, and aging (sarcopenia). Skeletal muscle function in animals can be evaluated by a range of different tests. All tests have limitations related to the physiological testing environment, and the selection of a specific test often depends on the nature of the experiments. Here, we describe an in vivo, non-invasive technique involving a helpful and easy assessment of force frequency-curve (FFC) in mice that can be performed on the same animal over time. This permits monitoring of disease progression and/or efficacy of a potential therapeutic treatment.


Asunto(s)
Músculo Esquelético/fisiología , Animales , Área Bajo la Curva , Fenómenos Biomecánicos , Electrodos , Masculino , Ratones Endogámicos C57BL , Contracción Muscular/fisiología
16.
Front Physiol ; 9: 1336, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30356878

RESUMEN

The transcriptional coactivators peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) and PGC-1ß are positive regulators of skeletal muscle mass and energy metabolism; however, whether they influence muscle growth and metabolic adaptations via increased protein synthesis is not clear. This study revealed PGC-1α or PGC-1ß overexpression in C2C12 myotubes increased protein synthesis and myotube diameter under basal conditions and attenuated the loss in protein synthesis following the treatment with the catabolic agent, dexamethasone. To investigate whether PGC-1α or PGC-1ß signal through the Akt/mTOR pathway to increase protein synthesis, treatment with the PI3K and mTOR inhibitors, LY294002 and rapamycin, respectively, was undertaken but found unable to block PGC-1α or PGC-1ß's promotion of protein synthesis. Furthermore, PGC-1α and PGC-1ß decreased phosphorylation of Akt and the Akt/mTOR substrate, p70S6K. In contrast to Akt/mTOR inhibition, the suppression of ERRα, a major effector of PGC-1α and PGC-1ß activity, attenuated the increase in protein synthesis and myotube diameter in the presence of PGC-1α or PGC-1ß overexpression. To characterize further the biological processes occurring, gene set enrichment analysis of genes commonly regulated by both PGC-1α and PGC-1ß was performed following a microarray screen. Genes were found enriched in metabolic and mitochondrial oxidative processes, in addition to protein translation and muscle development categories. This suggests concurrent responses involving both increased metabolism and myotube protein synthesis. Finally, based on their known function or unbiased identification through statistical selection, two sets of genes were investigated in a human exercise model of stimulated protein synthesis to characterize further the genes influenced by PGC-1α and PGC-1ß during physiological adaptive changes in skeletal muscle.

17.
Eur J Appl Physiol ; 118(3): 617-627, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29350278

RESUMEN

PURPOSE: We examined the concurrent characteristics of the remote development of strength and cross-sectional area (CSA) of upper body skeletal muscle in response to lower body resistance training performed with an applied blood flow restriction (BFR). METHODS: Males allocated to an experimental BFR group (EXP; n = 12) or a non-BFR control group (CON; n = 12) completed 7-weeks of resistance training comprising three sets of unilateral bicep curls [50% 1-repetition maximum (1-RM)], then four sets of bilateral knee extension and flexion exercises (30% 1-RM). EXP performed leg exercises with an applied BFR (60% limb occlusion pressure). 1-RM strength was measured using bilateral leg exercises and unilateral bicep curls in both trained and untrained arms. Muscle CSA was measured via peripheral quantitative computed tomography in the dominant leg and both arms. RESULTS: 1-RM in the trained arm increased more in EXP (2.5 ± 0.4 kg; mean ± SEM) than the contralateral untrained arm (0.8 ± 0.4 kg), and the trained arm of CON (0.6 ± 0.3 kg, P < 0.05). The increase in knee extension 1-RM was twofold that of CON (P < 0.01). Knee flexion 1-RM, leg CSA, and trained arm CSA increased similarly between groups (P > 0.05), while untrained arm CSA did not change (P > 0.05). CONCLUSION: Lower limb BFR training increased trained arm strength more than the contralateral untrained arm, and the trained arm of controls. However, there was no additional effect on muscle CSA. These findings support evidence for a BFR training-derived remote strength transfer that may be relevant to populations with localised movement disorders.


Asunto(s)
Adaptación Fisiológica , Brazo/fisiología , Pierna/irrigación sanguínea , Fuerza Muscular , Músculo Esquelético/fisiología , Acondicionamiento Físico Humano/métodos , Flujo Sanguíneo Regional , Adulto , Humanos , Aparatos de Compresión Neumática Intermitente , Pierna/fisiología , Masculino , Acondicionamiento Físico Humano/instrumentación
18.
Eur J Nutr ; 57(1): 363-372, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27785566

RESUMEN

PURPOSE: Telomere length is a biomarker of cellular ageing, with longer telomeres associated with longevity and reduced risk of chronic disease in older age. Consumption of a healthy diet may contribute to longevity via its impact on cellular ageing, but studies on diet and telomere length to date have been limited and their findings equivocal. The aim of this study was to examine associations between three indices of diet quality and telomere length in older men and women. METHODS: Adults aged 57-68 years participating in the Wellbeing, Eating and Exercise for a Long Life (WELL) study in Victoria, Australia (n = 679), completed a postal survey including an 111-item food frequency questionnaire in 2012. Diet quality was assessed via three indices: the Dietary Guideline Index, the Recommended Food Score, and the Mediterranean Diet Score. Relative telomere length was measured by quantitative polymerase chain reaction. Associations between diet quality and telomere length were assessed using linear regression adjusted for covariates. RESULTS: After adjustment for age, sex, education, smoking, physical activity, and body mass index (BMI), there were no significant associations between diet quality and relative telomere length. CONCLUSIONS: In a sample of older adults residing in Victoria, Australia, men and women aged 57-68 years with better-quality diets did not have longer telomeres. Further investigation in longitudinal studies will determine whether diet can influence telomere length over time in an ageing population.


Asunto(s)
Envejecimiento/fisiología , Dieta Saludable , Homeostasis del Telómero/fisiología , Anciano , Índice de Masa Corporal , Supervivencia Celular , Estudios Transversales , Dieta , Encuestas sobre Dietas , Ejercicio Físico , Femenino , Humanos , Longevidad/fisiología , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Victoria
19.
Muscle Nerve ; 57(5): 838-847, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29236291

RESUMEN

INTRODUCTION: The pathology of amyotrophic lateral sclerosis (ALS) is associated with impaired RNA processing and microRNA (miRNA) dysregulation. Here we investigate the regulation of the members of the miRNA biogenesis pathways and total miRNA levels at different stages of the disease. METHODS: Muscle, brain, and spinal cord tissue were obtained from presymptomatic, symptomatic, and end-stage superoxide dismutase 1 (SOD1)G93A mice. miRNA and transcript levels were measured by quantitative polymerase chain reaction. RESULTS: As the diseases progresses, several genes involved in miRNA biogenesis as well as the miRNA/total RNA (totRNA) ratio increased in the tibialis anterior (TA) muscle but not in the soleus or in neural tissue. DISCUSSION: We propose that a dysregulation in the miRNA/totRNA ratio in the TA muscle from SOD1G93A mice reflects a pathological increase in miRNA biogenesis machinery. Alterations in the miRNA/totRNA ratio influence the levels of reference noncoding RNAs and may therefore potentially compromise the accuracy of commonly used miRNA normalization strategies. Muscle Nerve 57: 838-847, 2018.


Asunto(s)
Esclerosis Amiotrófica Lateral/patología , Regulación de la Expresión Génica/genética , MicroARNs/metabolismo , Músculo Esquelético/metabolismo , ARN/metabolismo , Factores de Edad , Esclerosis Amiotrófica Lateral/genética , Análisis de Varianza , Animales , Estudios de Cohortes , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/metabolismo , Superóxido Dismutasa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...